

Sustainable high temperature insulation material SUHITEMPIN using waste silica fibre

Mathias Klinger¹

¹ ISE – Institut für Strukturleichtbau und Energieeffizienz gGmbH (Institute for lightweight construction and energy efficiency, Chemnitz, Germany)

Co-Authors:

S. Krause ¹, J. Grottendieck ², A. Yudin ², H. Erler ², M. Kilo ², M. Groß ², S. Matthes ², H. Hessenkemper ² Co-Affiliation:

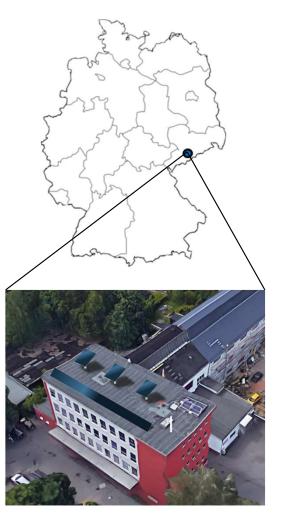
² Technische Universität Bergakademie Freiberg, Institut für Glas und Glastechnologie, Freiberg, Germany

Agenda

- 1. ISE
- 2. INNODAEM network
- 3. R&D project SUHITEMPIN
- 4. First results of material development
- 5. First results of application development
- 6. Conclusion

ISE - applied research and development

Background:


- Founded in 2015
- More then 20 regional, national and international projects
- 20 employees, incl. 16 research associates

Research focus:

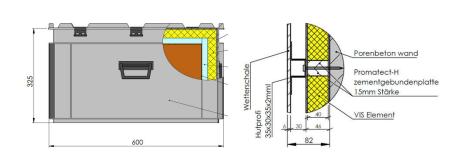
- Lightweight constructions
- Energy efficiency
 - Reducing energy consumption
 - Using renewable energy sources

Partner structure:

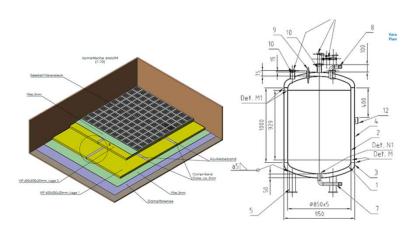
- Small to medium-sized companies
- Research institutions (universities, Fraunhofer, etc.)

INNODAEMM network

INNODAEMM = innovative thermal insulation materials


- Granted network of different stakeholders: •
 - Producers of high-performance thermal insulation materials (TIM), e.g. VIP
 - Producers of external thermal insulation composite systems
 - Users of TIM, e.g. in building construction, transportation, plant engineering
 - **Research** institutions
- Main goal: ٠

OPUS


Merging competences from research and industry in the field of innovative TIM and their applications

FA-VIP

8 research projects successfully completed or still under work, e.g. •

R&D project SUHITEMPIN

SUHITEMPIN

- = sustainable high-temperature insulation
- Main goal:
 - Development of resource-efficient HT TIM by using waste silica fibres and its application
- Key parameters:
 - Operation temperature: up to 1200 C
 - Density: approx. 250 kg/m3
 - Heat conductivity: approx. 0.2 W/(m K) @ 1000-1200 C
 - Lightweight and cheap
- Partners:
 - ASGLAWO technofibre
 - Buckau-Wolf

ASG

- \rightarrow producer of fibre-based TIM
- \rightarrow producer of mixing technologies

 \rightarrow research institute (materials)

 \rightarrow research institute (applications)

- TU Bergakademie Freiberg
- ISE
- Dibre Buck

aufgrund eines Beschlusses des Deutschen Bundestages

R&D project SUHITEMPIN

SUHITEMPIN

= sustainable high-temperature insulation

TECHNISCHE UNIVERSITÄT BERGAKADEMIE FREIBERG The University of Resources. Since 1765.

Material & Process development

- Processing technology fibres (cutting, separating, milling)
- Mixing technology / slurry (mixing tools, mixing parameters)
- Controlled porosity
 (composition of mixture, pore-producing agents, etc.)

Application development – HT insulation furnace

- Joining, assembling, mounting
- Demonstration objects and show cases

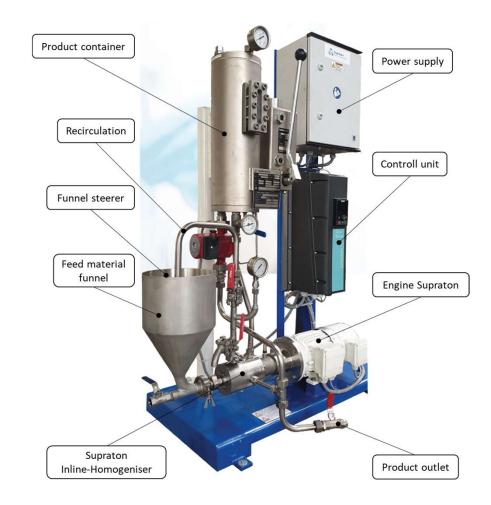
Application development – fire protecting (buildings)

- Joining, assembling, mounting
- Demonstration objects and show cases

Step-wise approach

Hand mixing

- Getting things started
- Finding a "good" composition/mixture
- Show that it can work

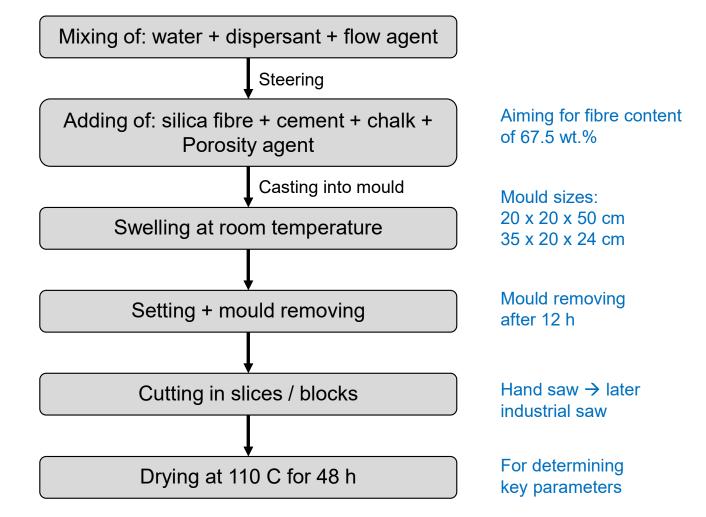

Laboratory scale → Supraton S100

- Refining mixture (different variations)
- Produce samples for analyses
- Analysing key parameters

Technical scale → Supraton S200

- Optimising mixing process to achieve key parameters
- Produce bigger samples for demonstration
- Final SUHITEMPIN to transfer to industry

BW Supraton S100 Homogeniser

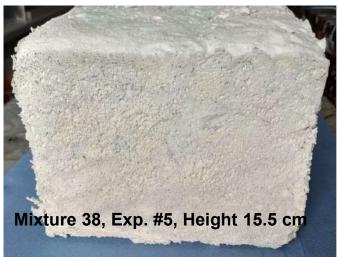


Finding / optimizing mixing technology

Optimizing mixture/composition

- Components:
 - Calcinated waste Silica fibres
 - Cement
 - Chalk
 - Porosity agent (aluminium powder)
 - Water
 - Dispersant (SDS = soap)
 - (Flow agent)
- Exemplary mixture (67.5 wt.% fibre content):

Component	Weight [g]
Silica fibre	5129
Cement	1520
Chalk	798
Alumina powder	27
Water	10559

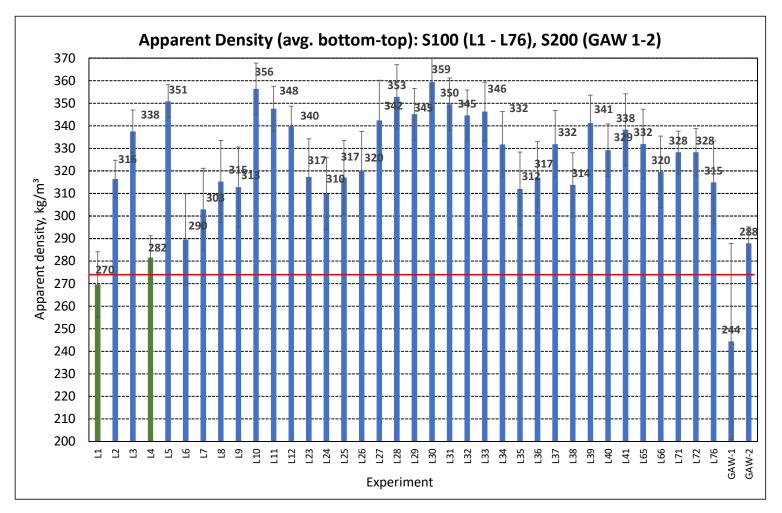


Getting things stable and comparable

- Process control:
 - Temperature increase/control
 - Point of component addition
 - Number of re-circulations
 - Place of re-circulation inlet
 - Revolutions per minute
 - Choice of tool type for Supraton
 - Many more

Optimizing fibre cutting/milling

- Starting material:
 - Calcinated (800 C) silica matts/fleece
 - Off-cuts / production residuals
- First SUHITEMPIN mixtures:
 - Fine powders (100-200 µm)
 - Ball milled
 → high energy input
 → high dust level
- Further SUHITEMPIN mixtures:
 - 1 x Rotary shear (RS)
 - 2 x RS
 - 1 x RS + 1 x cutting mill (CM)
 → was "feedable" into the Supraton S100



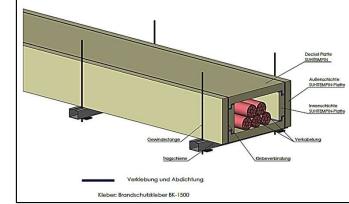
Variation of apparent density

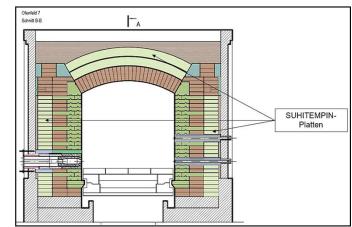
Wear of Supraton tools

- After 100+ experiments recognizable wear at body and teeth of tools
- Sealing issues with original graphite/graphite sealing (changed to graphite/SiC sealing)

Next steps in material development (with Supraton S200)

- Enables high flexibility in processing
 - Bigger feeding inlet
 - Bigger tools (diameter)
 - More options in tool geometry
 - Wider gap between stator and rotor
 - Better temperature control
- Using coarse ground fibres
 - Fine milling takes place inside Supraton
- Further optimizing mixture to reach key parameters
 - Longer fibres
 - Infra-red blockers, e.g. Fe3O4
- Producing bigger samples for applications

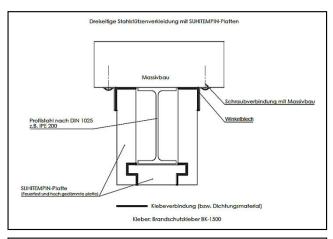


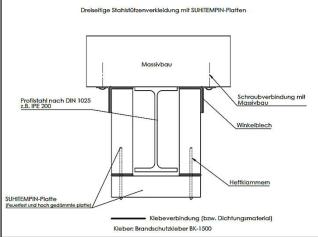


Fields of application

- Fire protection in building applications:
 - Cable / supply line ducts
 - Wall / ceiling facings
 - Column claddings
- TIM in industrial furnaces:
 → outer layers
 - → no exposure to aggressive atmospheres / slag
 - Tunnel furnace
 - Bogie hearth furnace
 - Roller passage furnace

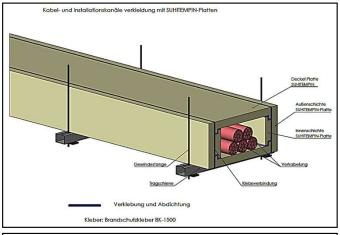
Kabel- und Installationskanäle verkleidung mit SUHITEMPIN-Platter

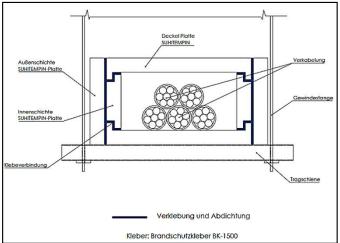

- ✓ Lightweight
- ✓ High insulation
- ✓ Low cost



Fire protection in building applications

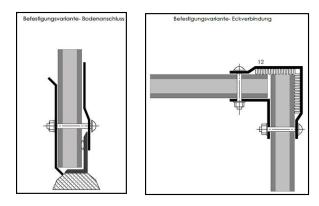
- 3- and 4-face cladding of T-beams (or other columns)
 → bonding + cramping
 - Protection of construction element against over-temperature
 - Benefit of SUHTEMPIN material:
 - \rightarrow increased thermal insulation
 - \rightarrow lightweight (lower density)
- Research focus
 - New material (new properties) \rightarrow adapted joining / assembling
 - Bonding with HT-glue (1-component, non-combustible)
 - Increasing contact area
 - Optional: additional metal cramps





Fire protection in building applications

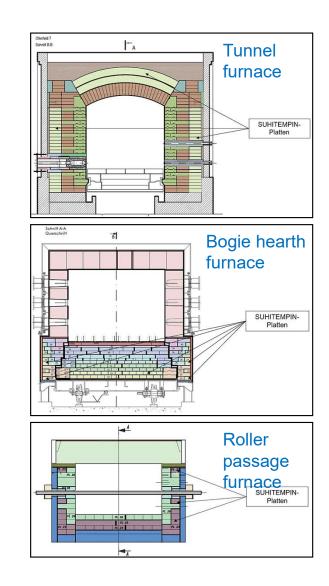
- Cable / supply line ducts
 → bonding
 - Protection of cables and supply lines against over-temperature and direct contact to fire and flue gas
 - Benefit of SUHTEMPIN material:
 - \rightarrow increased thermal insulation
 - \rightarrow lightweight (lower density)
 - \rightarrow construction can be slimmer
- Research focus
 - New material (new properties) \rightarrow adapted joining / assembling
 - Need for gas-tight bond
 - Bonding with HT-glue (1-component, non-combustible)
 - Increasing contact area via nut-profile





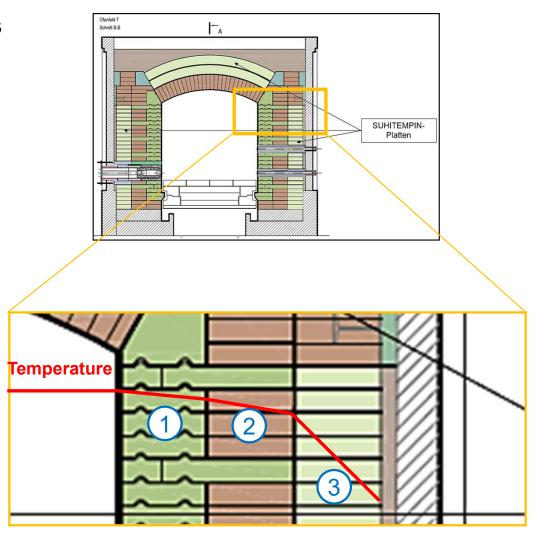
Thermal insulation in industrial furnaces

- SUHITEMPIN as boards in steel frame
 - Outer shell of furnace
 - Benefits of SUHITEMPIN material:
 - \rightarrow low weight
 - \rightarrow slim steel frame, less thermal bridges
 - \rightarrow lower costs
- Research focus
 - Joining and mounting points
 - Constructive solutions bolted and clamping connections
 - Consideration of mechanical properties (porous, brittle)



Thermal insulation in industrial furnaces

- SUHITEMPIN as brick in furnace wall
 - Outer layers with no corrosive conditions
 - Position according to temperature profile and max. operation temperature
 - Benefits of SUHITEMPIN material:
 → high thermal insulation
 → lower costs
- Research focus
 - Bonding and mortar technologies
 - Temperature profiles inside wall
 - Energy savings



Thermal insulation in industrial furnaces

• SUHITEMPIN as brick in furnace wall

	Conventional structure	SUHITEMPIN
T innen (°C)	1450 C	1450 C
Layer 1	SUPRATH 403-t ρ: 2300 kg/m ³ λ @1200: 1,8 W/(m K) Tmax: 1480 C	SUPRATH 403-t ρ: 640 kg/m ³ λ @1200: 1,8 W/(m K)
Layer 2	SUPRATH A40-442 ρ: 2250 kg/m ³ λ @1200: 1,8 W/(m K) Tmax: 1460 C	SUPRATH A40-442 ρ: 2250 kg/m ³ λ @1200: 1,8 W/(m K) Tmax: 1460 C
Layer 3	PORRATH FL 24-06 ρ: 640 kg/m ³ λ @1200: 0,38 W/(m K) Tmax: 1350 C PORRATH FL 24-10 ρ: 1000 kg/m ³ λ @1200: 0,50 W/(m K) Tmax: 1350 C	SUHITEMPIN ρ: 640 kg/m ³ λ @1200: 0,38 W/(m K) Tmax: 1200 C
U-Value, tot.	1.55 W/(m ² K)	0.79 W/(m² K) (51 %)

Conclusions

SUHITEMPIN = Sustainable high-temperate insulation

Material development

- Good composition found, with high fibre content (≈ 68 wt.%)
- Mixing technology with Supraton approved
- SUHITEMPIN properties not yet in optimal range
 - Density is close to target value
 - Porosity is homogenously distributed
 - Thermal conductivity still to high (0.4 W/(m K) @ 1200 C)

Application development

- Material with new properties (porous, brittle) needs adapted assembling technologies
- SUHTEMPIN properties beneficial for
 - Fire protection in building applications
 - HT thermal insulation material for industrial furnaces

Sustainable high temperature insulation material SUHITEMPIN using waste silica fibre

Mathias Klinger¹

¹ ISE – Institut für Strukturleichtbau und Energieeffizienz gGmbH (Institute for lightweight construction and energy efficiency, Chemnitz, Germany)

Co-Authors:

S. Krause ¹, J. Grottendieck ², A. Yudin ², H. Erler ², M. Kilo ², M. Groß ², S. Matthes ², H. Hessenkemper ² Co-Affiliation:

² Technische Universität Bergakademie Freiberg, Institut für Glas und Glastechnologie, Freiberg, Germany