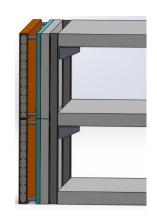
12. Freiberger Crashworkshop, 23./24.09.2021, Freiberg


"Anwendungsgerechte leichte Explosionsschutzlösungen für die Absorption kurzzeitdynamischer Belastungen"

Dipl.-Ing. Gregor Kaufmann,

Dipl.-Wirtsch.-Ing. Stefan Krause

Institut für Strukturleichtbau und Energieeffizienz gGmbH

1. Entwicklung innovativer leichter Explosionsschutzlösungen

- 1.1 Motivation
- 1.2 Grundlagen
- 1.3 Innovativer Ansatz
- 1.4 Funktionsprinzip
- 1.5 Erprobung Energieabsorption
- 1.6 Demonstratoren

2. Einsatz leichter Explosionsschutzlösungen für die Delaborierung von Sprengstoffen

- 2.1 Motivation
- 2.2 Aktuelle Situation
- 2.3 Detektion
- 2.4 Bergung und Vernichtung
- 2.5 Innovativer Ansatz

1. Entwicklung innovativer leichter Explosionsschutzlösungen

Weltweit zunehmende Gefährdungslage

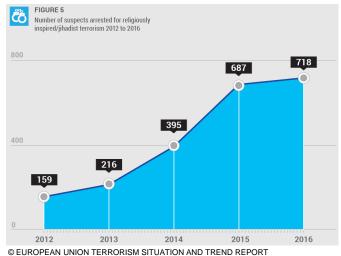
Madrid 03.04.2004

Oslo 22.07.2011

Paris 13.11.2015



London 07.07.2005



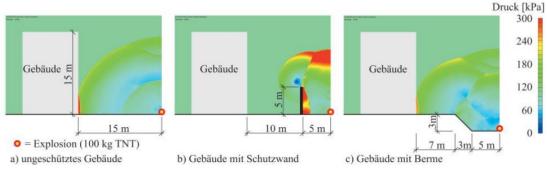
Brüssel 22.03.2016

© EUROPEAN UNION TERRORISM SITUATION AND TREND REPORT

Anschlag auf die deutsche Botschaft in Kabul (31.05.2017)

Gezielter Anschlag im Diplomatenviertel durch einen präparierten Abwassertanklaster (1500 kg Sprengstoff ≈ 5000 kg TNT-Äquivalent)

150 Tote, 400 Verletzte, massive Schäden an den Botschaften von Bulgarien, Deutschland, Frankreich, Indien, Japan, Türkei, Vereinigten Arabischen Emiraten und dem NATO-Hauptquartier



Beispiele für konventionelle Explosionsschutzlösungen

 Ziel ist die Ablenkung oder Reduzierung der Explosionslasten

© N. Gebekken: "Sicherheit bei terroristischen Bedrohungen im öffentlichen Raumdurch spezielle bauliche Lösungen; 2011

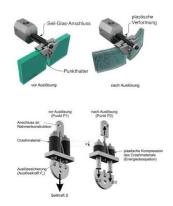
→ Passive Maßnahmen

Abstand zur Explosion schaffen

→ Aktive Maßnahmen

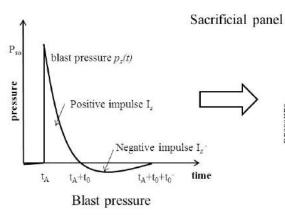
 Aufnahm bzw.
 Reduzierung der Explosionslasten

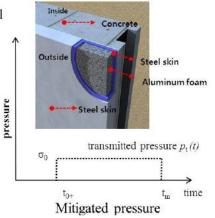
konventioneller Explosionsschutz i.d.R. durch Masse

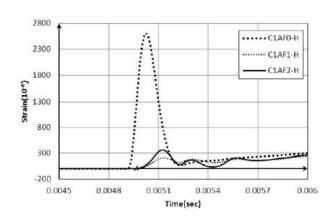


Neuartige Explosionsschutzlösungen

→ Explosionsschützende Seilnetzfassade

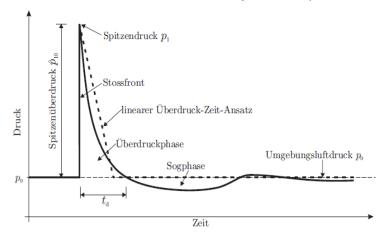



Ziel: Explosionsschutz unter Nutzung


leichter energieabsorbierender Materialien

© F. Wellershoff: "Blast enhanced facades for the new World Trade Center Towers"; 2008

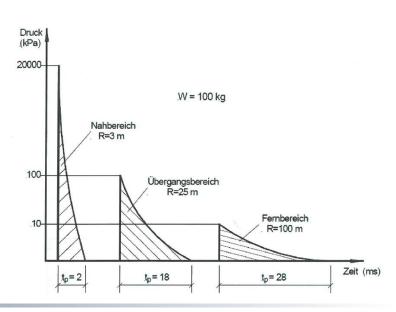
→ Explosionsschutz durch "Sacrifial Cladding"


 $\hbox{@ C. Shim: ,"Mitigation of blast effects on protective structures by aluminium foam panels"; 2012.}$

Grundlagen

Charakterisierung Explosionsbeanspruchung

→ Druck-Zeit-Verlauf einer Explosion (Friedländer-Funktion)


→ effektive Sprengstoffmasse und Abstand zur Explosion

$$z = \frac{R}{m_{eff}^{1/3}}$$

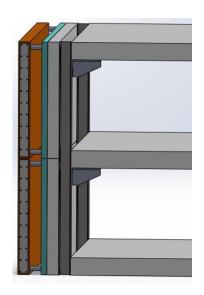
z ...skalierter Abstandsparameter

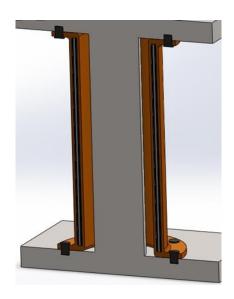
R ... Abstand vom Explosionsherd


 m_{eff} ...effektive Sprengstoffmasse TNT kg

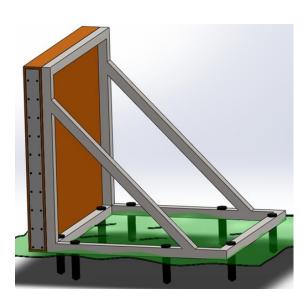
Innovativer Ansatz

- Erhöhte Energieabsorption durch leichte Hybridverbunde aus bewehrten und Aluminiumschaum
- → Funktionskombination in einem Bauteil zur Vernichtung kinetischer Energie




Erhöhte Energieabsorption durch leichte Hybridverbunde aus bewehrten und Aluminiumschaum

 \rightarrow Anwendungsfälle


Vorgehängte hinterlüftete Fassade (VHF)

Schutzummantelung für Gebäudestützen

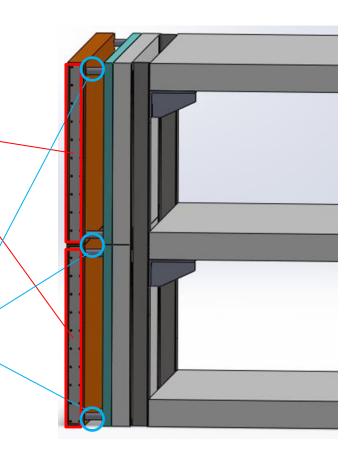
Temporärer Explosionsschutz

Funktionsprinzip

- Explosionsschützende vorgehängte hinterlüftete Fassade (VHF)
- → Funktionaler Aufbau

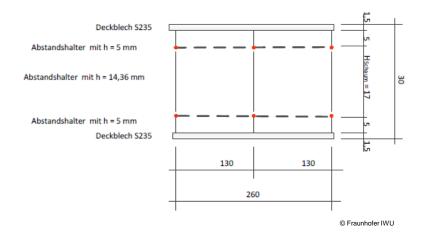
Sandwich-Fassadenelemente

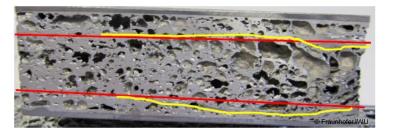
Bewehrte Al-Schaum-Sandwichplatten mit ausreichender Biegesteifigkeit und Energieabsorptionsvermögen in adaptiver Auslegung mit den Deformationselementen


Deformationselemente

Irreversible Dämpfungselemente zur wirksamen Reduzierung und Abtragung der Explosionslasten in die tragende Gebäudestruktur

Technologieentwicklung


Bewehrung


→ Einfluss der Bewehrung (Form, Art) auf die Eigenschaften des Aluminiumschaums

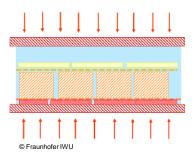
Parameter: - Basaltfasern

metallische Drahtstrukturen

- → Metallische Drahtstrukturen
 - Durchschäumversuche zur Herstellung von Schaumkernen mit ebenen Bewehrungslagen

Technologieentwicklung

Bewehrung

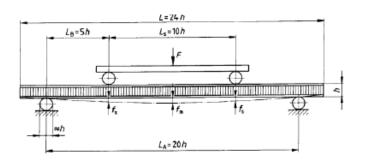

→ Einfluss der Bewehrung (Form, Art) auf die Eigenschaften des Aluminiumschaums

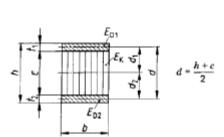
Parameter: - Basaltfasern

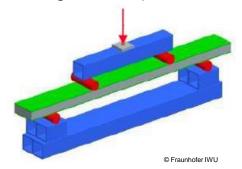
- metallische Drahtstrukturen

→ Metallische Drahtstrukturen

Durchschäumversuche zur Herstellung von Schaumkernen mit 3D-Bewehrungstruktur







Experimentelle Untersuchungen (4-Punkt-Biegeversuche)

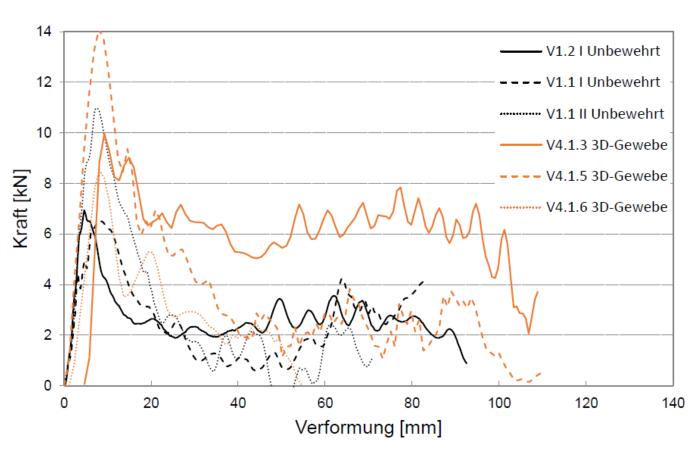
→ 4-Punkt-Biegeversuche nach DIN 53293 (Prüfung von Kernverbunden – Biegeversuch)

 $\rightarrow \text{quasistatische Druckversuche}$

→ dynamische Fallturmversuche

Experimentelle Untersuchungen (4-Punkt-Biegeversuche)

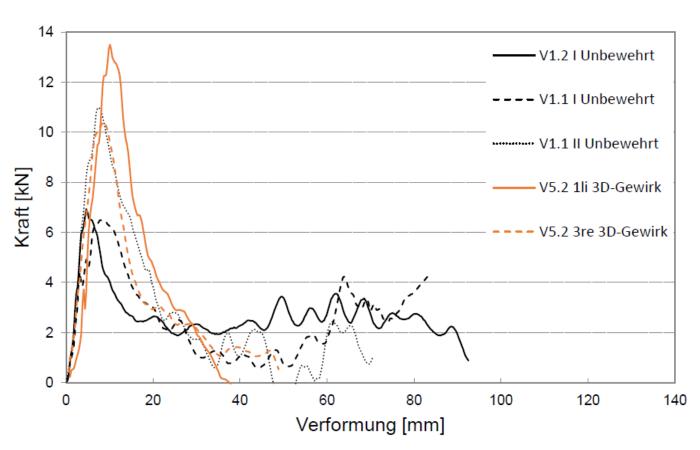
$\rightarrow \text{Versuchsprogramm}$

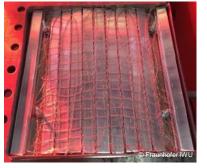

Variante	Bewehrungsmaterial	Bewehrungsstruktur	Deckblechdicke [mm]	Proben- höhe [mm]	Abmessungen [mm²]	Beanspruchungsart
V1	ohne Bewehrung	ne Bewehrung ohne Bewehrung 1,5 30	30	720 x 75	statisch	
•••	onne bewennung		2,5	50	720 x 75	dynamisch
V2	Gewebe (doppelt drilliert)	2D-Bewehrungslagen (5 mm Abstand zu DB)	1,5	30	720 x 75	statisch
					720 x 75	dynamisch
V3	Gewirk	2D-Bewehrungslagen (5 mm Abstand zu DB)	1,5	30	720 x 75	statisch
					720 x 75	dynamisch
V4	Gewebe	3D- Bewehrungsstruktur	1,5	30	720 x 75	statisch
					720 x 75	dynamisch
V5	Gewirk	3D- Bewehrungsstruktur	1,5	30	720 x 75	statisch
					720 x 75	dynamisch
V6	ohne Bewehrung	ohne Bewehrung	1,5 Basaltgewe- be-Epoxidharz- laminat, geklebt	28	672 x 70	statisch
					672 x 70	dynamisch

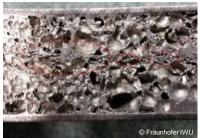
© Fraunhofer IWU

Experimentelle Untersuchungen (4-Punkt-Biegeversuche)

→ 3D-Gewebe



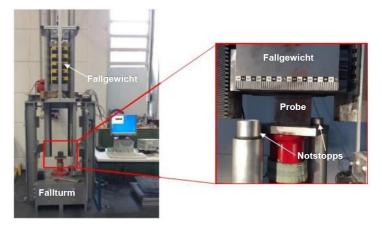




Experimentelle Untersuchungen (4-Punkt-Biegeversuche)

\rightarrow 3D-Abstandsgewirk

Erprobung – Energieabsorption Dämpfungselemente

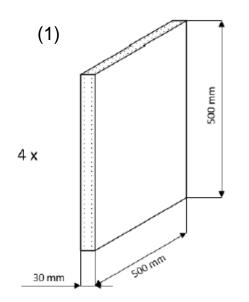


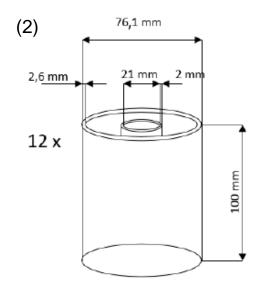
Experimentelle Untersuchungen (Druck-/Fallturmversuche)

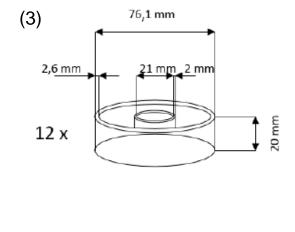
 $\rightarrow \text{quasistatische Druckversuche}$

→ dynamische Fallturmversuche

 $\rightarrow \text{Versuchsprogramm}$

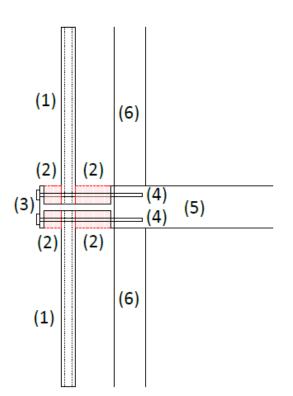

Probentyp/	leeres ausgeschäumtes		ausgeschäumtes	
Parameter	Vierkantrohr	Vierkantrohr	Spiralwellrohr	
Probenquerschnitt [mm]	80 × 80	80 × 80	ø 80	
Rohrwandstärke [mm]	2	2	1	
Probenhöhe [mm]	80	80	80	
Probenmasse [g]	360,0	592,2	302,0	
Rohrwandmaterial	1.4301	1.4301	1.4301	
Aluminiumschaum		AIMg1Si0,5	AlMg1Si0,5	





Demonstrator – Vorgehängte hinterlüftete Fassade

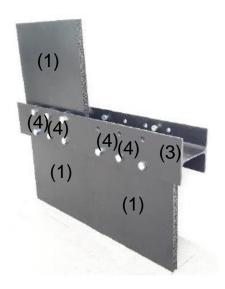
→ Konstruktionsprinzip des Demonstrators

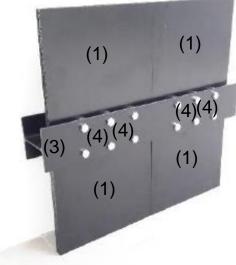

- (1) Stahl-Aluminiumschaum-Sandwichplatte mit innenliegender 3D-Gewebe-Abstandsbewehrung
- (2) Stahl-Aluminiumschaum-Dämpfungselemente zur Reduzierung der explosiven Druckbelastung
- (3) Stahl-Aluminiumschaum-Dämpfungselemente zur Reduzierung der explosiven Sogbelastung

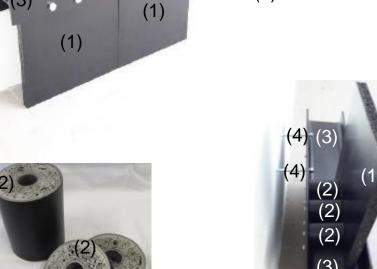
Demonstratoren

Demonstrator – Vorgehängte hinterlüftete Fassade

→ Konstruktionsprinzip des Demonstrators


- (1) SAS-Platte mit Bewehrung
- (2) Dämpfungselemente
- (3) Gebäudeanbindung
- (4) Verankerung
- (5) Deckenelement
- (6) Wandelement

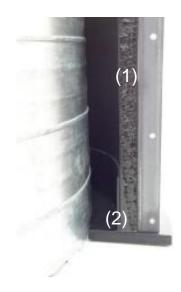

Demonstratoren



Demonstrator – Vorgehängte hinterlüftete Fassade

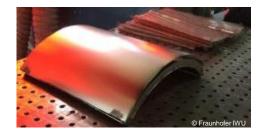
→ Fertiger Demonstrator

- (1) SAS-Platte mit Bewehrung
- (2) Dämpfungselemente
- (3) Gebäudeanbindung
- (4) Verankerung



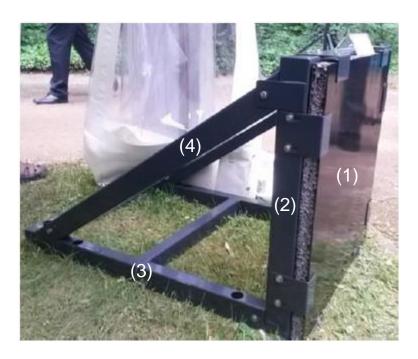
Demonstrator – Vorgehängte hinterlüftete Fassade

\rightarrow Fertiger Demonstrator



- (1) SAS-Platten mit Bewehrung
- (2) Gebäudeanbindung

 $\rightarrow \text{Herstellung}$



Demonstratoren

Demonstrator – Vorgehängte hinterlüftete Fassade

 \rightarrow Fertiger Demonstrator

- (1) SAS-Platte mit Bewehrung
- (2) Tragrahmen
- (3) Bodenrahmen
- (4) Versteifung

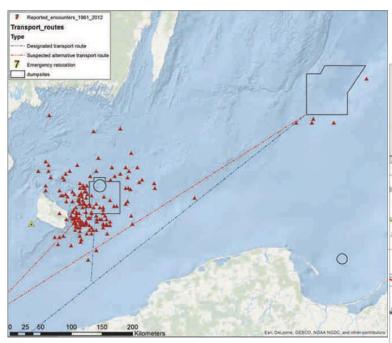
 Einsatz leichter Explosionsschutzlösungen für die Delaborierung von Sprengstoffen

- 1 600 000 t Munition in Nord- und Ostseegewässern
- Langfristig ist eine Freisetzung nahezu aller Kampfstoffe zu erwarten
- Makro- und Meiofauna in geringerer Zahl und mit weniger Taxa in Versenkungsgebiete
- Geringe Sauerstoffkonzentration um Versenkungsgebiete reduziert aktuell die Exposition von Organismen mit Chemischen Kampfstoffen
 - Erste Effekte können auf Organe, Gewebe, Zellen und subzellular nachgewiesen werden
- Akut ist keine Gefährdung von Fischen anzunehmen, aber potenzielle Chronische und indirekte Folgen für das Ökosystem sind nicht abzuschätzen
- Von 179 Sedimentproben enthielten 57 eine oder mehrere Chemikalien die in Chemischen Kampfstoffen enthalten sind.
- Ansätze zur Identifikation von Munition sind vorhanden, Motivation zur Umsetzung ist aber gering.

Hohes Gefährdungspotential für den Menschen durch direkten Kontakt

- Vielzahl an Munitionsfunden durch Fischer
 - Fangen der Munition in Schleppnetzen
 - Freisetzen der Chemischen Kampfstoffe an der Oberfläche
 - Gefährdung der Besatzung, verschiedene Fälle mit schweren Verletzungen der Besatzung
 - Häufig werden Chemische Kampfstoffe nicht rechtzeitig erkannt
 - Besatzung der WŁA 206 entsorgten Senfgas in einem Abfallcontainer des Hafens, Besatzung erlitt schwere Hautverletzungen, Todesfälle wurden nur durch die geringe Außentemperatur verhindert, welche die Evaporation des Senfgas verlangsamte.
 - Besatzung der Hildarstindür erkannte ein eingefangenes Objekt nicht als Senfgas, das Senfgas breitete sich auf dem Schiff und in den Kabinen aus. Die Besatzung erlitt schwere Verletzungen.
- Hohes Gefährdungspotential für den Menschen im Rahmen von Bauprojekten
 - Nordstream durch mit Munition belastete Gebiete
 - Weitere Bauprojekte wie Offshore Windkraftanlagen

Nicht alle mit Kampfmitteln belasteten Flächen sind bekannt


- Lückenhafte Dokumentation
- Fehlende Aufarbeitung historischer Berichte
- Entsorgung entlang der offiziellen und alternativen Routen
- Strömungsbedingtes Abtreiben
 - Erste chemische Waffen in Holzkisten entsorgt
- Ungenau Navigation und schlechte Markierung der Versenkungsgebiete
- Inoffizielle Berichte gehen von Versenkung von Munition durch DDR und UdSSR aus zu denen keine Daten vorhanden sind


Offizielle und inoffizielle Versenkungsgebiete. Offizielle Transportwege als Punktlinie. [Bełdowski et al. 2014]

Probleme bei Bauprojekten der Energieversorgung

Kontakte mit Chemischen Kampfstoffen oder Munitionsteilen um Bornholm von 1961 bis 2021 [Helcom]

Nord Stream Route [Sanderson et al. 2012]

Little Belt

Allgemein:

• Tiefe: 25-31 m

 Teilweise mit Sediment bis zu einer Dicke von 8m bedeckt

Fläche: 4180 ha

Menge:

5 000 t einzelne Munition

1 250 t auf zwei Schiffen bereits geborgen

Chemische Kampfstoffe:

Tabun

Senfgas

 Phosgen wurde als möglicher Kampfstoff genannt, wird jedoch angezweifelt

Weiteres:

Bis zu 1 200 auf dem Weg von Flensburg versenkt

 Gemischt mit anderen Munitionstypen wie Artilleriegrananten

Bergung von 10,5cm Tabungranaten von einem der versenkten Schiffe [Knobloch et al. 2013]

Gotland Basin

Allgemein:

• Tiefe: 93-137 m

• Lehmiges Sediment bis zu 6m dick

Fläche: 141 610 ha

Menge:

• 2 000 t einzelne Munition

Chemische Kampfstoffe

- Senfgas
- Arsinöl
- Adamsit
- α-chloroacetophenone
- Tabun

Weiteres:

- Versenkung zusammen mit konventioneller Munition und Seeminen
- Versenkung von Chemieabfällen

An die Oberfläche kommende Ankertaumienen [Landesportal Schleswig-Holstein]

Bornholm Basin

Allgemein:

Tiefe: 93-137 m

• Lehmiges Sediment bis zu 6m dick

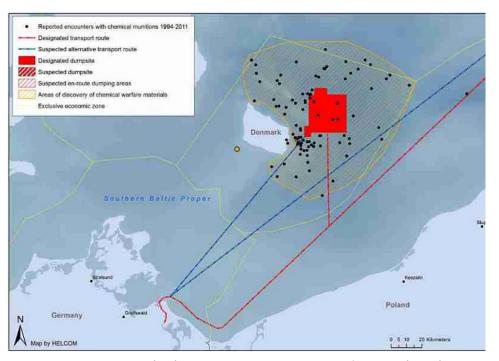
Fläche: 67 260 ha

Menge:

• 32 000 t einzelne Munition (Soviet)

30 t einzelne Munition (DDR)

30 t auf Schiff versenkt (DDR)


Chemische Kampfstoffe

Senfgas

- Arsinöl
- Adamsit
- α-chloroacetophenone
- Phosgen
- Lewisite
- Tabun

Weiteres:

- Versenkung zusammen mit konventioneller Munition
- Versenkung von Chemieabfällen

Versenkungszone (rot), Bereiche mit Munitionsfunden (gelb), Kontakte mit Munition (schwarz), offizielle Transportrouten (rot) und vermutete Transportrouten (blau) des Bornholm Basin [Knobloch et al. 2013]

Art der Munition

- Sehr große Vielfalt an Munition
 - Chemische Waffen
 - Mit Sprengkörpern
 - In Fässern
 - Bomben
 - Minen
 - Im 2 WK bis etwa 1 t Schießwolle
 - Kleinere Sprengkörper
 - Wurfgranaten
 - Artillerie Treibladung
 - Spreng-Brand-Granaten

Chemische Waffen und Fässer mit Senfgas geladen auf einem Schiff zur Versenkung [Helcom]

Wurfgranate (links)
[Kampfmittelräumdienst
Schleswig-Holstein]
4 cm Spreng-BrandGranaten (rechts)
[Feuerwehr Hamburg]

KC250 Fliegerbombe [Bornholm Marinedistrikt]

Detektion

Analyse Historischer Dokumente

- · Viele Historische Dokumente bis heute nicht analysiert
- Festlegung eines Suchgebiets in dem Größere Mengen Munition erwartet werden
- · Abmaße der Munition herausarbeiten die in dem Suchgebiet erwartet wird

Hydroakustische Verfahren

- Fächerecholot
- Seitensichtsonar
- Ermittlung von möglichen Objekten mit ähnlichen Abmessungen wie die erwartete Munition

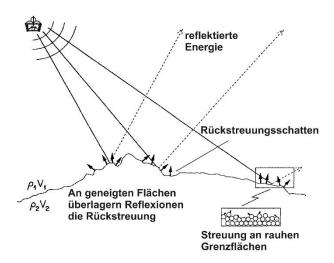
Magnetometrische Verfahren

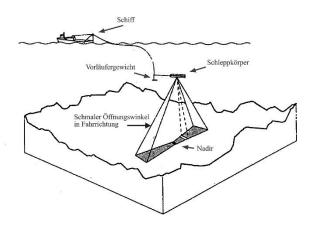
- Erkennung von Ferromagnetischen Objekten
- Rückschlüsse auf Munitionshüllen

Sichtprüfungen und Sedimentproben

- Überprüfung der mit anderen Verfahren gefundenen Objekte
- Ergibt wo Sichtprüfung möglich ist Sicherheit über das Objekt
- Sedimentproben geben Aufschluss über Kampfstoff und zustand des Behälters

Detektion

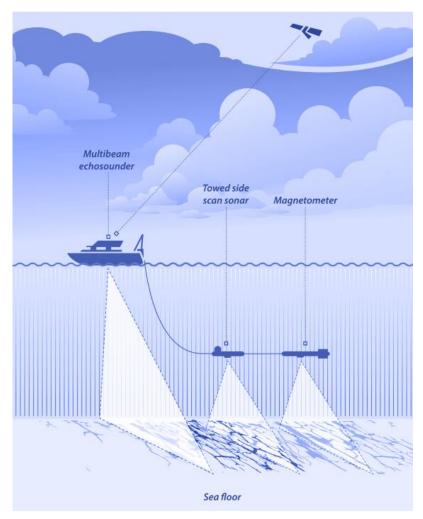

Hydroakustische Gefahren

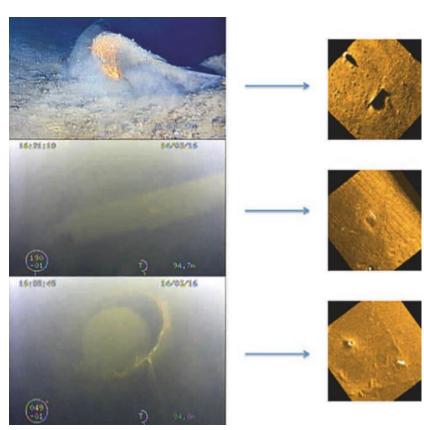

Seitensichtsonar (SSS)

- Ausführung als Schwimmer gezogen von einem Schiff
 - Untersuchung großer Flächen in vergleichsweise kurzer Zeit
 - Genauigkeit gering
- Ausführung an einem AUV
 - Weniger Zeiteffizient
 - Hohe Genauigkeit
 - Gefahr durch Wracks und Geisternetze aufgrund geringem Abstand zum Grund
- Kombination der Verfahren Sinnvoll
 - Untersuchung der Fläche auf Gefahren für das AUV durch SSS als Schwimmer
 - Suche nach Objekten durch genaueres SSS als AUV

Fächerecholot:

Ähnlich zum SSS als Schwimmer




Seitensichtsonar [GEOMAR]

Detektion

Konfiguration der genutzten Technik zur Detektion von Munition im CHEMSEA Projekt [Bełdowski et al. 2014]

Objekte identifiziert durch SSS (rechts) und deren Bestätigung durch ROV (links) [Grabowski et al. 2014]

Bergung und Vernichtung

Bergung und Delaborierung über Wasser

- Große tiefen mit hohem Wasserdruck
 - Druckabfall könnte zur Detonation führen
- Munition nicht immer zum Transport geeignet
- Zustand der Munition sehr verschieden
 - Wanddicken variabel

Mögliches Vorgehen

- Bergung in Druckcontainern
 - Munition verbleibt in Meerwasser
 - Druck bleibt konstant
 - Vernichtung erfolgt zusammen mit Container
 - Munition hat zu keinem Zeitpunkt der Bergung Kontakt zur Umgebung
 - Vernichtung auf dem Festland
- Alternativ (nach KOBELCO)
 - Bergung in Containern
 - Inspektion nach Bergung (Röntgenverfahren) und Entfernung aus Bergungscontainer
 - Vernichtung auf Seeplattform
 - Problem: Druckänderung können zur Detonation führen, nicht für Bergung aus größeren Tiefen geeignet

Bergung und Vernichtung

Delaborierung am Fundort

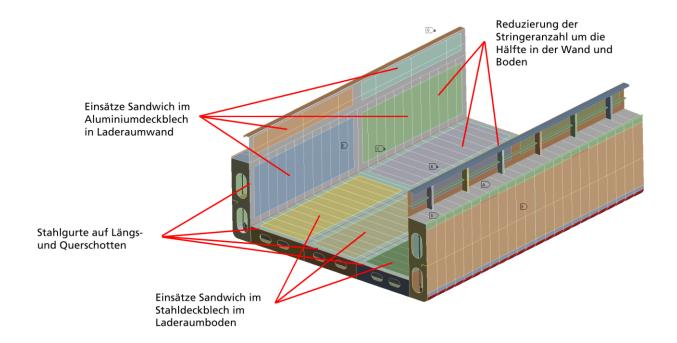
- Vorteile:
 - Arbeit unter gleichbleibendem Druck
 - Reduktion der Detonationsgefahr
 - Transportwege werden minimal gehalten
 - Reduktion des Risikos f
 ür Menschen
- Voraussetzungen:
 - Prozess muss automatisiert oder Remotely controlled erfolgen
 - Delaborierungsanlage am Meeresgrund
- Herausforderungen
 - Delaborierung ist komplexer als Vernichtung in Sprengkammer
 - Zusätzliche Herausforderung durch Delaborierung unter Wasser, unter hohem Druck und automatisiert oder Remotely controlled
 - Nicht jede Munition ist für die Delaborierung geeignet
 - Kontrollierte Sprengung oder Vernichtung in Sprengkammern muss weiterhin erfolgen

Delaborierung ist der Sprengung zu präferieren, aber Sprengung ist technisch und finanziell einfacher umzusetzen.

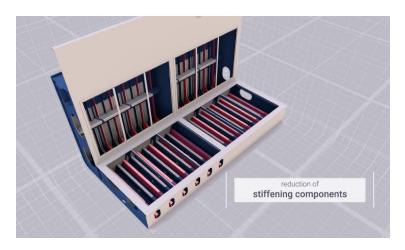
Bergung und Delaborierung durch autonome Systeme mit leichtem Explosionsschutz

Autonome Schiffe mit unbemannten Ponton und autonomen Bergungsfahrzeugen

Bergung von Sprengstoffen durch autonome Bergungsfahrzeuge

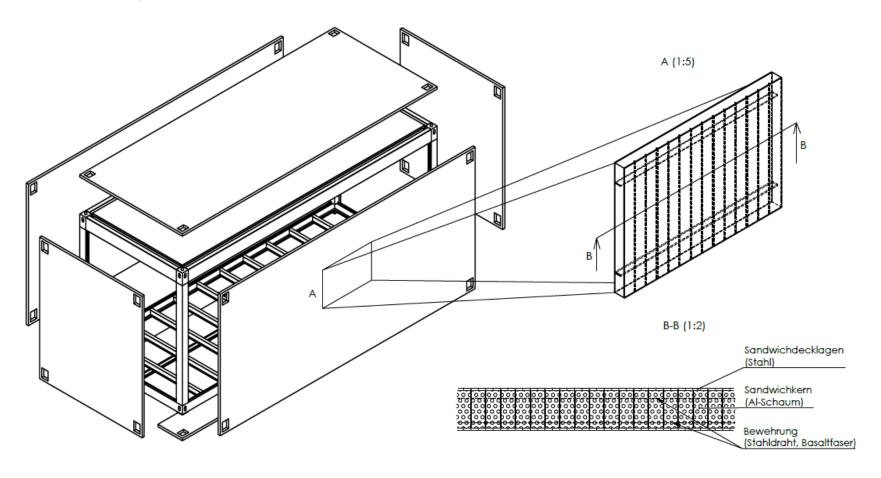

autonomen Bergungsfahrzeug und Delaborierungs-Container

Einsatz von bewehrten Aluminiumschaumsandwiches

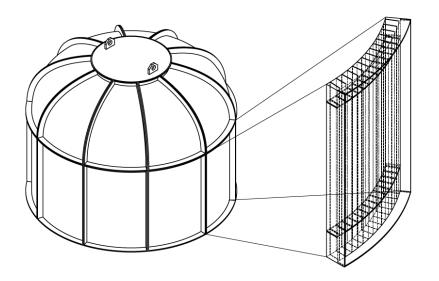

Gewichtsreduzierte Hybrid-Schiffskonstruktion durch den Einsatz bewehrter Al-Schaumsandwiches

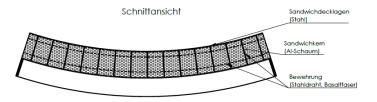
Einsatz von bewehrten Aluminiumschaumsandwiches

Gewichtsreduzierte Hybrid-Schiffskonstruktion durch den Einsatz bewehrter Al-Schaumsandwiches



Einsatz von bewehrten Aluminiumschaumsandwiches


Delaborierungscontainer (Munitionstransportcontainer)



Einsatz von bewehrten Aluminiumschaumsandwiches

Unterwasser-Delaborierungs-/Sprengvorrichtung (Munitionstransportcontainer)

Zusammenfassung

- Hoher Bedarf und weitreichende Anwendungsgebiete für leichte Explosionsschutzlösungen
- Erfolgreiche funktionale und technologische Entwicklung von Hybridverbunden mit duktilem Aluminiumschaumkern und eingeschäumten metallischen Drahtbewehrungen (2D- und 3D-Strukturen)
- Nachweis des erhöhten Energieabsorptionsvermögens der entwickelten Hybridverbunde gegenüber konventionellen Stahl-Aluminiumschaum-Sandwichverbunden
- Fertigung funktionaler Demonstratoren für die Anwendungsfälle (Fassaden-, Stützen-, mobiler Explosionsschutz) mittels der entwickelten Hybridverbunde
- Weiterentwicklung und Einsatz in maritimen Anwendungsbereichen, wie der Delaborierung von Sprengstoffen

Institut für Strukturleichtbau und Energieeffizienz gGmbH Limbacher Straße 56 09113 Chemnitz www.institut-se.de

Dipl.-Ing. Gregor Kaufmann

Geschäftsführer

Dipl.-Wirtsch.-Ing. Stefan Krause

Leiter Projektmanagement

E-Mail: g.kaufmann@institut-se.de

Tel: (+49) 371 33 800 0

E-Mail: s.krause@institut-se.de

Tel: (+49) 371 33 800 15